Gesetz der universellen Gravitation
Wir erklären Ihnen, was das Gesetz der universellen Gravitation ist, wie es seine Formel und seine Aussage ist. Darüber hinaus Beispiele für die Verwendung seiner Formel.

Was ist das Gesetz der universellen Gravitation?
Das Gesetz der universellen Gravitation ist eines der physikalischen Gesetze, die Isaac Newton in seinem Buch Philosophiae Naturalis Principia Mathematica von 1687 formuliert hat. Es beschreibt die gravitative Wechselwirkung zwischen mit Masse ausgestatteten Körpern und stellt eine Beziehung her Anteil n der Kraft, mit der sich diese Körper anziehen.
Um dieses Gesetz zu formulieren, folgerte Newton, dass die Kraft, mit der sich zwei Massen anziehen, proportional zum Produkt ihrer Massen geteilt durch den Abstand ist, der sie im Quadrat trennt. Diese Schlussfolgerungen sind das Ergebnis einer empirischen Überprüfung durch Beobachtung sowie das mathematische Genie des englischen Wissenschaftlers.
Durch die Vergrößerung des Abstands, der zwei Körper voneinander trennt, wirkt dieses Gesetz ungefähr so, als ob die gesamte Masse beider Körper in ihrem Schwerpunkt konzentriert wäre. Das heißt, je näher und massiver zwei Körper sind, desto intensiver werden sie sich anziehen . Wie andere Newtonsche Gesetze bedeutete es einen Fortschritt in der wissenschaftlichen Berechnung der Zeit.
Heute wissen wir jedoch, dass dieses Gesetz ab einer bestimmten Masse seine Gültigkeit verliert (dh im Fall von supermassiven Objekten) und dann das Zeugnis an das von 1915 formulierte Allgemeine Relativitätsgesetz weitergibt Albert Einstein Das Gesetz der universellen Gravitation ist jedoch immer noch nützlich, um die meisten Gravitationsphänomene des Sonnensystems zu verstehen.
Es kann Ihnen dienen: Wissenschaftliches Wissen, Wissenschaftliche Methode
Erklärung des Gesetzes der universellen Gravitation
Die formale Aussage dieses Newtonschen Gesetzes besagt das
Die Kraft, mit der zwei Objekte angezogen werden, ist proportional zum Produkt ihrer Massen und umgekehrt proportional zum Quadrat der Entfernung, die sie voneinander trennt. “
Dies bedeutet, dass zwei beliebige Körper mit einer größeren oder kleineren Kraft angezogen werden, abhängig von ihrer Masse, die größer oder kleiner ist, und auch abhängig von dem Abstand zwischen ihnen.
Mehr in: Schwerkraft
Formel des Gesetzes der universellen Gravitation
Die Grundformel des Gesetzes der universellen Gravitation lautet wie folgt:
Wo:
- F ist die Anziehungskraft zwischen zwei Massen
- G ist die universelle Gravitationskonstante (berechnet bei 6.673484, 10 -11 Nm 2 / kg 2 )
- m 1 ist die Masse des ersten Körpers
- m 2 ist die Masse des zweiten Körpers
- r die Entfernung, die sie trennt.
Wenn die Anziehungskräfte jedes Körpers (F 1 und F 2 ) berechnet werden, gibt es zwei gleiche Kräfte im Modul und in der entgegengesetzten Richtung, und anstatt aufgehoben zu werden, werden sie kombiniert. Dies erfordert eine Vektorformel:
F 12 = -G. (m 1 · m 2 ) / ǁr 2 - r 1 · 2 . ȗ 12
Dabei ist ȗ 12 der Einheitsvektor, der vom Schwerpunkt eines Objekts zum anderen gezogen werden kann.
Beispiele für das Gesetz der universellen Gravitation
Lassen Sie uns ein paar Übungen als Beispiel für die Anwendung dieser Formel lösen.
- Angenommen, eine Masse von 800 kg und eine andere von 500 kg werden in einem Vakuum angezogen, das durch einen Abstand von 3 Metern voneinander getrennt ist. Wie können wir die Anziehungskraft berechnen, die sie erfahren?
Einfach durch Anwenden der Formel:
F = G. (m 1 · m 2 ) / r 2
Was wird es sein: F = (6, 67 × 10 –11 Nm 2 / kg 2 ). (800 kg, 500 kg) / (3) 2
Und dann: F = 2.964 x 10 -6 N.
- Wie weit sollten wir unter einem anderen Gesichtspunkt zwei Massekörper von 1 kg platzieren, damit sie mit einer Kraft von 1 N anziehen?
Ausgehend von der gleichen Formel
F = G. (m 1 · m 2 ) / r 2
Wir werden den Abstand löschen und dabei r 2 = G (m 1 · m 2 ) / F beibehalten
Oder was ist das gleiche: r = √ (G. [m 1. M 2 ]) / F
Das heißt: r = √ (6, 67 × 10 –11 Nm 2 / kg 2, 1 kg × 1 kg) / 1 N
Das Ergebnis ist r = 8, 16 x 10 -6 Meter.
Weiter mit: Gravitationsfeld.